Struct CartesianCuboidRods
pub struct CartesianCuboidRods<F, const D: usize> {
pub domain: CartesianCuboid<F, D>,
}
Expand description
Cells are represented by rods
Fields§
§domain: CartesianCuboid<F, D>
The base-cuboid which is being repurposed
Trait Implementations§
§impl<F, const D: usize, __cr_private_Cell, __cr_private_SubDomain, __cr_private_CellIterator> Domain<__cr_private_Cell, __cr_private_SubDomain, __cr_private_CellIterator> for CartesianCuboidRods<F, D>where
CartesianCuboidRods<F, D>: DomainRngSeed + DomainCreateSubDomains<__cr_private_SubDomain> + SortCells<__cr_private_Cell, VoxelIndex = <CartesianCuboidRods<F, D> as DomainCreateSubDomains<__cr_private_SubDomain>>::VoxelIndex>,
__cr_private_SubDomain: SubDomain<VoxelIndex = <CartesianCuboidRods<F, D> as DomainCreateSubDomains<__cr_private_SubDomain>>::VoxelIndex>,
<CartesianCuboidRods<F, D> as DomainCreateSubDomains<__cr_private_SubDomain>>::SubDomainIndex: Clone + Hash + Eq + Ord,
<CartesianCuboidRods<F, D> as DomainCreateSubDomains<__cr_private_SubDomain>>::VoxelIndex: Clone + Hash + Eq + Ord,
__cr_private_CellIterator: IntoIterator<Item = __cr_private_Cell>,
impl<F, const D: usize, __cr_private_Cell, __cr_private_SubDomain, __cr_private_CellIterator> Domain<__cr_private_Cell, __cr_private_SubDomain, __cr_private_CellIterator> for CartesianCuboidRods<F, D>where
CartesianCuboidRods<F, D>: DomainRngSeed + DomainCreateSubDomains<__cr_private_SubDomain> + SortCells<__cr_private_Cell, VoxelIndex = <CartesianCuboidRods<F, D> as DomainCreateSubDomains<__cr_private_SubDomain>>::VoxelIndex>,
__cr_private_SubDomain: SubDomain<VoxelIndex = <CartesianCuboidRods<F, D> as DomainCreateSubDomains<__cr_private_SubDomain>>::VoxelIndex>,
<CartesianCuboidRods<F, D> as DomainCreateSubDomains<__cr_private_SubDomain>>::SubDomainIndex: Clone + Hash + Eq + Ord,
<CartesianCuboidRods<F, D> as DomainCreateSubDomains<__cr_private_SubDomain>>::VoxelIndex: Clone + Hash + Eq + Ord,
__cr_private_CellIterator: IntoIterator<Item = __cr_private_Cell>,
§type SubDomainIndex = <CartesianCuboidRods<F, D> as DomainCreateSubDomains<__cr_private_SubDomain>>::SubDomainIndex
type SubDomainIndex = <CartesianCuboidRods<F, D> as DomainCreateSubDomains<__cr_private_SubDomain>>::SubDomainIndex
Subdomains can be identified by their unique SubDomainIndex.
The backend uses this property to construct a mapping (graph) between subdomains.
§type VoxelIndex = <CartesianCuboidRods<F, D> as DomainCreateSubDomains<__cr_private_SubDomain>>::VoxelIndex
type VoxelIndex = <CartesianCuboidRods<F, D> as DomainCreateSubDomains<__cr_private_SubDomain>>::VoxelIndex
Similarly to the SubDomainIndex, voxels can be accessed by
their unique index. The backend will use this information to construct a mapping
(graph) between voxels inside their respective subdomains.
§fn decompose(
self,
n_subdomains: NonZero<usize>,
cells: __cr_private_CellIterator,
) -> Result<DecomposedDomain<<CartesianCuboidRods<F, D> as Domain<__cr_private_Cell, __cr_private_SubDomain, __cr_private_CellIterator>>::SubDomainIndex, __cr_private_SubDomain, __cr_private_Cell>, DecomposeError>
fn decompose( self, n_subdomains: NonZero<usize>, cells: __cr_private_CellIterator, ) -> Result<DecomposedDomain<<CartesianCuboidRods<F, D> as Domain<__cr_private_Cell, __cr_private_SubDomain, __cr_private_CellIterator>>::SubDomainIndex, __cr_private_SubDomain, __cr_private_Cell>, DecomposeError>
§impl<F, const D: usize> DomainCreateSubDomains<CartesianSubDomainRods<F, D>> for CartesianCuboidRods<F, D>
impl<F, const D: usize> DomainCreateSubDomains<CartesianSubDomainRods<F, D>> for CartesianCuboidRods<F, D>
§type SubDomainIndex = usize
type SubDomainIndex = usize
This should always be identical to Domain::SubDomainIndex.
§type VoxelIndex = [usize; D]
type VoxelIndex = [usize; D]
This should always be identical to Domain::VoxelIndex.
§fn create_subdomains(
&self,
n_subdomains: NonZero<usize>,
) -> Result<impl IntoIterator<Item = (<CartesianCuboidRods<F, D> as DomainCreateSubDomains<CartesianSubDomainRods<F, D>>>::SubDomainIndex, CartesianSubDomainRods<F, D>, Vec<<CartesianCuboidRods<F, D> as DomainCreateSubDomains<CartesianSubDomainRods<F, D>>>::VoxelIndex>)>, DecomposeError>
fn create_subdomains( &self, n_subdomains: NonZero<usize>, ) -> Result<impl IntoIterator<Item = (<CartesianCuboidRods<F, D> as DomainCreateSubDomains<CartesianSubDomainRods<F, D>>>::SubDomainIndex, CartesianSubDomainRods<F, D>, Vec<<CartesianCuboidRods<F, D> as DomainCreateSubDomains<CartesianSubDomainRods<F, D>>>::VoxelIndex>)>, DecomposeError>
Generates at most
n_subdomains
. This function can also return a lower amount of
subdomains but never less than 1.§impl<F, const D: usize> DomainRngSeed for CartesianCuboidRods<F, D>
impl<F, const D: usize> DomainRngSeed for CartesianCuboidRods<F, D>
§fn get_rng_seed(&self) -> u64
fn get_rng_seed(&self) -> u64
Obtains the current rng seed
§impl<C, F, const D: usize> SortCells<C> for CartesianCuboidRods<F, D>where
C: Position<Matrix<F, Dyn, Const<D>, VecStorage<F, Dyn, Const<D>>>>,
F: 'static + Field + Clone + Debug + FromPrimitive + ToPrimitive + Float + Copy,
impl<C, F, const D: usize> SortCells<C> for CartesianCuboidRods<F, D>where
C: Position<Matrix<F, Dyn, Const<D>, VecStorage<F, Dyn, Const<D>>>>,
F: 'static + Field + Clone + Debug + FromPrimitive + ToPrimitive + Float + Copy,
§type VoxelIndex = [usize; D]
type VoxelIndex = [usize; D]
An index which determines to which next smaller unit the cell should be assigned.
§fn get_voxel_index_of(
&self,
cell: &C,
) -> Result<<CartesianCuboidRods<F, D> as SortCells<C>>::VoxelIndex, BoundaryError>
fn get_voxel_index_of( &self, cell: &C, ) -> Result<<CartesianCuboidRods<F, D> as SortCells<C>>::VoxelIndex, BoundaryError>
If given a cell, we can sort this cell into the corresponding sub unit.
Auto Trait Implementations§
impl<F, const D: usize> Freeze for CartesianCuboidRods<F, D>where
F: Freeze,
impl<F, const D: usize> RefUnwindSafe for CartesianCuboidRods<F, D>where
F: RefUnwindSafe,
impl<F, const D: usize> Send for CartesianCuboidRods<F, D>where
F: Send,
impl<F, const D: usize> Sync for CartesianCuboidRods<F, D>where
F: Sync,
impl<F, const D: usize> Unpin for CartesianCuboidRods<F, D>where
F: Unpin,
impl<F, const D: usize> UnwindSafe for CartesianCuboidRods<F, D>where
F: UnwindSafe,
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
§impl<T> Instrument for T
impl<T> Instrument for T
§fn instrument(self, span: Span) -> Instrumented<Self> ⓘ
fn instrument(self, span: Span) -> Instrumented<Self> ⓘ
§fn in_current_span(self) -> Instrumented<Self> ⓘ
fn in_current_span(self) -> Instrumented<Self> ⓘ
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self> ⓘ
fn into_either(self, into_left: bool) -> Either<Self, Self> ⓘ
Converts
self
into a Left
variant of Either<Self, Self>
if into_left
is true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self> ⓘ
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self> ⓘ
Converts
self
into a Left
variant of Either<Self, Self>
if into_left(&self)
returns true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read more§impl<T> Pointable for T
impl<T> Pointable for T
§impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
impl<SS, SP> SupersetOf<SS> for SPwhere
SS: SubsetOf<SP>,
§fn to_subset(&self) -> Option<SS>
fn to_subset(&self) -> Option<SS>
The inverse inclusion map: attempts to construct
self
from the equivalent element of its
superset. Read more§fn is_in_subset(&self) -> bool
fn is_in_subset(&self) -> bool
Checks if
self
is actually part of its subset T
(and can be converted to it).§fn to_subset_unchecked(&self) -> SS
fn to_subset_unchecked(&self) -> SS
Use with care! Same as
self.to_subset
but without any property checks. Always succeeds.§fn from_subset(element: &SS) -> SP
fn from_subset(element: &SS) -> SP
The inclusion map: converts
self
to the equivalent element of its superset.