cellular_raza_building_blocks/cell_building_blocks/interaction.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931
use cellular_raza_concepts::*;
use nalgebra::SVector;
use serde::{Deserialize, Serialize};
#[cfg(feature = "pyo3")]
use pyo3::prelude::*;
/// No interaction of the cell with any other.
#[derive(Clone, Debug, Serialize, Deserialize, PartialEq)]
#[cfg_attr(feature = "pyo3", pyclass)]
pub struct NoInteraction;
impl<Pos, Vel, For> Interaction<Pos, Vel, For> for NoInteraction
where
For: num::Zero,
{
fn calculate_force_between(
&self,
_: &Pos,
_: &Vel,
_: &Pos,
_: &Vel,
_ext_information: &(),
) -> Result<(For, For), CalcError> {
Ok((For::zero(), For::zero()))
}
fn get_interaction_information(&self) -> () {}
}
/// Lennard-Jones interaction potential with numerical upper and lower limit.
///
/// # Parameters & Variables
/// | Symbol | Struct Field | Description |
/// |:---:| --- | --- |
/// | $\sigma$ | `sigma` | Measure for the size of the particle. |
/// | $\epsilon$ | `epsilon` | Interaction Strength |
/// | $\beta$ | `bound` | Upper bound on the interaction strength. |
/// | $\xi$ | `cutoff` | Cutoff after which the interaction strength is identically 0 |
/// | | | |
/// | $r$ | | Distance between interacting particles |
///
/// # Equations
///
/// The pure Lennard-Jones potential has many numerical downsides as it is very unstable to use
/// and thus typically only recommended with extremely small integration steps.
/// Here, we artificially limit the repelling part of the potential thus increasing numerical
/// usability.
/// However, it also has in principle infinite range.
/// This is directly contrary to one of the fundamental assumptions of `cellular_raza`.
/// We resolve the latter problem by simply assigning the value `0` if $r>=\zeta$ although this
/// behavior is not continuous anymore.
/// The potential of the interaction is given by
/// \\begin{align}
/// U(r) &= 4\epsilon\left[ \left(\frac{\sigma}{r}\right)^{12} -
/// \left(\frac{\sigma}{r}\right)^6\right]\\\\
/// V(r) &= \min(U(r), \beta)\theta(r-\zeta)
/// \\end{align}
/// where $\epsilon$ determines the overall interaction strength of the potential
/// and $\sigma$ the shape and interaction range.
/// The function $\theta(r-\zeta)$ is the heaviside function which sets the interaction to zero
/// when reaching the cutoff point.
/// The minimum of this potential is at $r_\text{min}=2^{1/6}\sigma$.
/// For two identically-sized spherical interacting particles $r_\text{min}$ has to align with
/// the diameter of their size.
/// The interaction is artificially bound from above by a value $\beta$ in
/// order to obtain better numerical stability.
///
/// # References
/// \[1\]
/// “On the determination of molecular fields.—I. From the variation of the viscosity of a gas with
/// temperature,”
/// Proceedings of the Royal Society of London.
/// Series A, Containing Papers of a Mathematical and Physical Character, vol. 106, no. 738.
/// The Royal Society, pp. 441–462, Oct. 1924. doi:
/// [10.1098/rspa.1924.0081](https://doi.org/10.1098/rspa.1924.0081).
///
#[derive(Clone, Debug, Serialize, Deserialize)]
#[cfg_attr(feature = "pyo3", pyclass(get_all, set_all))]
pub struct BoundLennardJones {
/// Interaction strength $\epsilon$ of the potential.
pub epsilon: f64,
/// Overall size $\sigma$ of the object of the potential.
pub sigma: f64,
/// Numerical bound $\beta$ of the interaction strength.
pub bound: f64,
/// Defines a cutoff $\zeta$ after which the potential will be fixed to exactly zero.
pub cutoff: f64,
}
#[derive(Clone, Debug, Serialize, Deserialize)]
#[cfg_attr(feature = "pyo3", pyclass(get_all, set_all))]
/// Identical to [BoundLennardJones] but for `f32` type.
pub struct BoundLennardJonesF32 {
/// Interaction strength $\epsilon$ of the potential.
pub epsilon: f32,
/// Overall size $\sigma$ of the object of the potential.
pub sigma: f32,
/// Numerical bound $\beta$ of the interaction strength.
pub bound: f32,
/// Defines a cutoff $\zeta$ after which the potential will be fixed to exactly zero.
pub cutoff: f32,
}
macro_rules! implement_bound_lennard_jones(
($struct_name:ident, $float_type:ident) => {
impl<const D: usize> Interaction<SVector<$float_type, D>, SVector<$float_type, D>, SVector<$float_type, D>>
for $struct_name
{
fn calculate_force_between(
&self,
own_pos: &SVector<$float_type, D>,
_own_vel: &SVector<$float_type, D>,
ext_pos: &SVector<$float_type, D>,
_ext_vel: &SVector<$float_type, D>,
_ext_information: &(),
) -> Result<(SVector<$float_type, D>, SVector<$float_type, D>), CalcError> {
let z = own_pos - ext_pos;
let r = z.norm();
let dir = z / r;
let val = 4.0 * self.epsilon / r
* (12.0 * (self.sigma / r).powf(11.0) - 6.0 * (self.sigma / r).powf(5.0));
let max = self.bound / r;
let q = if self.cutoff >= r { 1.0 } else { 0.0 };
Ok((- dir * q * max.min(val), dir * q * max.min(val)))
}
fn get_interaction_information(&self) -> () {}
}
};
);
implement_bound_lennard_jones!(BoundLennardJones, f64);
implement_bound_lennard_jones!(BoundLennardJonesF32, f32);
/// Calculates the interaction strength behind the [MorsePotential] and [MorsePotentialF32]
/// structs.
pub fn calculate_morse_interaction<F, const D: usize>(
own_pos: &nalgebra::SVector<F, D>,
ext_pos: &nalgebra::SVector<F, D>,
own_radius: F,
ext_radius: F,
cutoff: F,
strength: F,
potential_stiffness: F,
) -> Result<(nalgebra::SVector<F, D>, nalgebra::SVector<F, D>), CalcError>
where
F: Copy + nalgebra::RealField,
{
let z = own_pos - ext_pos;
let dist = z.norm();
// If the distance between the two objects is greater than the cutoff, we
// immediately return zero.
if dist > cutoff || dist.is_zero() {
return Ok((
nalgebra::SVector::<F, D>::zeros(),
nalgebra::SVector::<F, D>::zeros(),
));
}
let dir = z / dist;
let r = own_radius + ext_radius;
let s = strength;
let a = potential_stiffness;
let two = F::one() + F::one();
let e = (-a * (dist - r)).exp();
let force = -two * s * a * e * (F::one() - e);
Ok((dir * force, -dir * force))
}
macro_rules! implement_morse_potential(
($struct_name:ident, $float_type:ident) => {
/// Famous [Morse](https://doi.org/10.1103/PhysRev.34.57) potential for diatomic molecules.
///
/// # Parameters & Variables
/// | Symbol | Struct Field | Description |
/// |:---:| --- | --- |
/// | $R$ | `radius` | Radius of the particle |
/// | $\lambda$ | `potential_stiffness` | Can be interpreted as the inverse width of the potential |
/// | | `cutoff` | Cutoff after which the interaction strength is identically 0 |
/// | $V_0$ | `strength` | Interaction strength |
/// | | | |
/// | $r$ | | Distance between interacting particles |
///
/// \\begin{equation}
/// V(r) = V_0\left(1 - e^{-\lambda(r-R)}\right)^2
/// \\end{equation}
///
// TODO remove this entirely or make it somehow work
// #[doc = include_str!("plot_morse_potential.html")]
///
/// # References
/// \[1\]
/// P. M. Morse,
/// “Diatomic Molecules According to the Wave Mechanics. II. Vibrational Levels,”
/// Physical Review, vol. 34, no. 1. American Physical Society (APS),
/// pp. 57–64, Jul. 01, 1929.
/// doi: [10.1103/physrev.34.57](https://doi.org/10.1103/PhysRev.34.57).
#[derive(Clone, Debug, Serialize, Deserialize, PartialEq)]
#[cfg_attr(feature = "pyo3", pyclass(set_all, get_all))]
pub struct $struct_name {
/// Radius of the object
pub radius: $float_type,
/// Defines the length for the interaction range
pub potential_stiffness: $float_type,
/// Cutoff after which the interaction is exactly 0
pub cutoff: $float_type,
/// Strength of the interaction
pub strength: $float_type,
}
impl<const D: usize>
Interaction<
nalgebra::SVector<$float_type, D>,
nalgebra::SVector<$float_type, D>,
nalgebra::SVector<$float_type, D>,
$float_type,
> for $struct_name
{
fn get_interaction_information(&self) -> $float_type {
self.radius
}
fn calculate_force_between(
&self,
own_pos: &nalgebra::SVector<$float_type, D>,
_own_vel: &nalgebra::SVector<$float_type, D>,
ext_pos: &nalgebra::SVector<$float_type, D>,
_ext_vel: &nalgebra::SVector<$float_type, D>,
ext_info: &$float_type,
) -> Result<
(nalgebra::SVector<$float_type, D>, nalgebra::SVector<$float_type, D>),
CalcError
> {
calculate_morse_interaction(
own_pos,
ext_pos,
self.radius,
*ext_info,
self.cutoff,
self.strength,
self.potential_stiffness,
)
}
}
#[cfg(feature = "pyo3")]
#[cfg_attr(docsrs, doc(cfg(feature = "pyo3")))]
#[pymethods]
impl $struct_name {
/// Constructs a new [
#[doc = stringify!($struct_name)]
/// ]
/// ```
#[doc = concat!("use cellular_raza_building_blocks::", stringify!($struct_name), ";")]
/// # let (radius, potential_stiffness, cutoff, strength) = (1.0, 1.0, 1.0, 1.0);
#[doc = concat!("let morse_potential = ", stringify!($struct_name), "::new(")]
/// radius,
/// potential_stiffness,
/// cutoff,
/// strength,
/// );
/// ```
#[new]
#[pyo3(signature = (radius, potential_stiffness, cutoff, strength))]
pub fn new(
radius: $float_type,
potential_stiffness: $float_type,
cutoff: $float_type,
strength: $float_type
) -> Self {
Self {
radius,
potential_stiffness,
cutoff,
strength,
}
}
}
};
);
implement_morse_potential!(MorsePotential, f64);
implement_morse_potential!(MorsePotentialF32, f32);
macro_rules! implement_mie_potential(
($name:ident, $float_type:ty) => {
/// Generalizeation of the [BoundLennardJones] potential.
///
/// \\begin{align}
/// U(r) &= C\epsilon\left[ \left(\frac{\sigma}{r}\right)^n -
/// \left(\frac{\sigma}{r}\right)^m\right]\\\\
/// C &= \frac{n}{n-m}\left(\frac{n}{m}\right)^{\frac{n}{n-m}}\\\\
/// V(r) &= \min(U(r), \beta)\theta(r-\zeta)
/// \\end{align}
///
/// This struct comes in a 64bit version [MiePotential] and a 32bit variant
/// [MiePotentialF32].
///
/// # References
/// G. Mie, “Zur kinetischen Theorie der einatomigen Körper,”
/// Annalen der Physik, vol. 316, no. 8. Wiley, pp. 657–697, Jan. 1903.
/// doi: [10.1002/andp.19033160802](https://doi.org/10.1002/andp.19033160802).
#[cfg_attr(feature = "pyo3", pyclass(get_all, set_all))]
#[derive(Clone, Debug, Deserialize, Serialize, PartialEq)]
pub struct $name {
/// Interaction strength $\epsilon$ of the potential.
pub radius: $float_type,
/// Overall size $\sigma$ of the object of the potential.
pub strength: $float_type,
/// Numerical bound $\beta$ of the interaction strength.
pub bound: $float_type,
/// Defines a cutoff $\zeta$ after which the potential will be fixed to exactly zero.
pub cutoff: $float_type,
/// Exponent $n$ of the potential
pub en: $float_type,
/// Exponent $m$ of the potential
pub em: $float_type,
}
impl<const D: usize> Interaction<
SVector<$float_type, D>,
SVector<$float_type, D>,
SVector<$float_type, D>,
$float_type
>
for $name
{
fn calculate_force_between(
&self,
own_pos: &SVector<$float_type, D>,
_own_vel: &SVector<$float_type, D>,
ext_pos: &SVector<$float_type, D>,
_ext_vel: &SVector<$float_type, D>,
ext_radius: &$float_type,
) -> Result<(SVector<$float_type, D>, SVector<$float_type, D>), CalcError> {
let z = own_pos - ext_pos;
let r = z.norm();
if r == 0.0 {
return Err(CalcError(format!(
"identical position for two objects. Cannot Calculate force in Mie potential"
)));
}
if r > self.cutoff {
return Ok((
SVector::<$float_type, D>::zeros(),
SVector::<$float_type, D>::zeros()
));
}
let dir = z / r;
let x = (self.radius + *ext_radius);
let sigma = self.radius_to_sigma_factor() * x;
let mie_constant =
self.en / (self.en - self.em)
* (self.en / self.em).powf(self.em / (self.en - self.em));
let potential_part = self.en / sigma * (sigma / r).powf(self.en + 1.0)
- self.em /sigma * (sigma / r).powf(self.em + 1.0);
let force = (mie_constant * self.strength * potential_part).min(self.bound);
Ok((dir * force, - dir * force))
}
fn get_interaction_information(&self) -> $float_type {
self.radius
}
}
impl $name {
fn radius_to_sigma_factor(&self) -> $float_type {
(self.em / self.en).powf(1.0 / (self.en - self.em))
}
}
#[cfg(feature = "pyo3")]
#[cfg_attr(docsrs, doc(cfg(feature = "pyo3")))]
#[pymethods]
impl $name {
/// Constructs a new [
#[doc = stringify!($name)]
/// ]
/// ```
#[doc = concat!("use cellular_raza_building_blocks::", stringify!($name), ";")]
/// let (radius, strength, bound, cutoff, en, em) = (1.0, 1.0, 1.0, 1.0, 1.0, 1.0);
#[doc = concat!("let mie_potential = ", stringify!($name), "::new(")]
/// radius,
/// strength,
/// bound,
/// cutoff,
/// en,
/// em,
/// );
/// ```
#[new]
#[pyo3(signature = (radius, strength, bound, cutoff, en, em))]
pub fn new(
radius: $float_type,
strength: $float_type,
bound: $float_type,
cutoff: $float_type,
en: $float_type,
em: $float_type,
) -> Self {
Self {
radius,
strength,
bound,
cutoff,
en,
em,
}
}
}
}
);
implement_mie_potential!(MiePotential, f64);
implement_mie_potential!(MiePotentialF32, f32);
/// Derives an interaction potential from a point-like potential.
#[derive(Serialize, Deserialize, Clone, Debug, PartialEq)]
pub struct VertexDerivedInteraction<A, R, I1 = (), I2 = ()> {
/// Interaction potential used when other vertex is outside of current polygon.
pub outside_interaction: A,
/// Interaction potential when vertex is inside current polygon.
pub inside_interaction: R,
phantom_inf_1: core::marker::PhantomData<I1>,
phantom_inf_2: core::marker::PhantomData<I2>,
}
impl<A, R, I1, I2> VertexDerivedInteraction<A, R, I1, I2> {
/// Constructs a new [VertexDerivedInteraction] from two Interaction potentials.
///
/// One serves as the inside and one for the outside interaction.
pub fn from_two_forces(attracting_force: A, repelling_force: R) -> Self
where
A: Interaction<Vector2<f64>, Vector2<f64>, Vector2<f64>, I1>,
R: Interaction<Vector2<f64>, Vector2<f64>, Vector2<f64>, I2>,
{
VertexDerivedInteraction {
outside_interaction: attracting_force,
inside_interaction: repelling_force,
phantom_inf_1: core::marker::PhantomData::<I1>,
phantom_inf_2: core::marker::PhantomData::<I2>,
}
}
}
use itertools::Itertools;
use nalgebra::Vector2;
/// Calculate the point on a line which is closest to an external given point.
///
/// This function takes an external point $\vec{p}$ and a line segment described by two points
/// $\vec{p}_1,\vec{p}_2$.
/// It returns a tuple $(d, \vec{x}, q)$ which contains the distance $d$ between the calculated
/// nearest point and the external point, the calculated point $\vec{x}$ and a fractional value
/// $0\leq q\leq 1$ which is the relative length of the calculated nearest point between the
/// points of the given line segment given by:
/// $$\vec{x} = (1-q)\vec{p}_1 + q\vec{p}_2$$
///
/// ```
/// use nalgebra::Vector2;
/// # use cellular_raza_building_blocks::nearest_point_from_point_to_line;
///
/// let external_point = Vector2::from([0f64; 2]);
/// let line_segment = (
/// Vector2::from([1.0, 0.0]),
/// Vector2::from([-1.0, 2.0]),
/// );
/// let (dist, point, rel_length) = nearest_point_from_point_to_line(
/// &external_point,
/// &line_segment,
/// );
///
/// assert!((dist - 1.0/2f64.sqrt()).abs() < 1e-10);
/// assert!((rel_length - 0.25).abs() < 1e-10);
/// assert!((point.x - 0.5).abs() < 1e-10);
/// assert!((point.y - 0.5).abs() < 1e-10);
/// ```
pub fn nearest_point_from_point_to_line<F, const D: usize>(
point: &SVector<F, D>,
line: &(SVector<F, D>, SVector<F, D>),
) -> (F, SVector<F, D>, F)
where
F: Copy + nalgebra::RealField,
{
let ab = line.1 - line.0;
let ap = point - line.0;
let t = (ab.dot(&ap) / ab.norm_squared()).clamp(F::zero(), F::one());
let nearest_point = line.0 * (F::one() - t) + line.1 * t;
((point - nearest_point).norm(), nearest_point, t)
}
/// Generalizes the [nearest_point_from_point_to_line] function for a collection of line segments.
/// ```
/// # use cellular_raza_building_blocks::nearest_point_from_point_to_multiple_lines;
/// # use nalgebra::Vector2;
/// # use itertools::Itertools;
/// let point = Vector2::from([0.5; 2]);
/// let polygon = vec![
/// Vector2::from([0.0, 0.0]),
/// Vector2::from([0.5, 0.0]),
/// Vector2::from([0.7, 0.4]),
/// Vector2::from([0.9, 0.8]),
/// ];
/// let lines = polygon.clone().into_iter().tuple_windows::<(_, _)>().collect::<Vec<_>>();
/// // This looks something like this:
/// // 3
/// // /
/// // p /
/// // 2
/// // /
/// // /
/// // 0 --- 1
/// let (n, (dist, calculated_point, t)) = nearest_point_from_point_to_multiple_lines(
/// &point,
/// &lines,
/// ).unwrap();
/// assert_eq!(n, 1);
/// let test_dist: f64 = (calculated_point - point).norm();
/// assert!((dist - test_dist).abs() < 1e-6);
/// let (v1, v2) = lines[n];
/// assert!((calculated_point - ((1.0 - t)*v1 + t*v2)).norm() < 1e-6);
/// for p in polygon {
/// assert!(dist <= (p - point).norm());
/// }
/// ```
pub fn nearest_point_from_point_to_multiple_lines<'a, F>(
point: &Vector2<F>,
polygon_lines: impl IntoIterator<Item = &'a (Vector2<F>, Vector2<F>)>,
) -> Option<(usize, (F, Vector2<F>, F))>
where
F: Copy + nalgebra::RealField,
{
polygon_lines
.into_iter()
.enumerate()
.map(|(n_row, line)| (n_row, nearest_point_from_point_to_line(point, &line)))
.fold(None, |acc, v| {
let distance_v = v.1.0;
match acc {
None => Some(v),
Some(e) => {
let distance_acc = e.1.0;
if distance_v < distance_acc {
Some(v)
} else {
acc
}
}
}
})
}
/// Implements the ray-casting algorithm to check if a ray intersects with a given line segment.
///
/// This method can be applied to polygons to calculate if a point is inside of a given polygon or
/// outside of it.
/// ```
/// # use cellular_raza_building_blocks::ray_intersects_line_segment;
/// use nalgebra::Vector2;
/// let line_segment = (
/// Vector2::from([1.0, 3.0]),
/// Vector2::from([1.0, 1.0]),
/// );
/// let ray = (
/// Vector2::from([4.0, 1.5]),
/// Vector2::from([2.0, 1.5]),
/// );
/// // This should look something like this:
/// // |
/// // | <------
/// // |
/// assert!(ray_intersects_line_segment(&ray, &line_segment));
/// // Chaning the order of arguments will look like this
/// // |
/// // | ------
/// // |
/// // v
/// assert!(!ray_intersects_line_segment(&line_segment, &ray));
/// ```
pub fn ray_intersects_line_segment<F>(
ray: &(Vector2<F>, Vector2<F>),
line_segment: &(Vector2<F>, Vector2<F>),
) -> bool
where
F: Copy + nalgebra::RealField + PartialOrd,
{
// Calculate the intersection point as if the ray and line were infinite
let (r1, r2) = ray;
let (l1, l2) = line_segment;
// We solve the formulas
// p = r1 + t*(r2-r1)
// p = l1 + u*(l2-l1)
// This can be done by using the orthogonal complements for (r2-r1) and (l2-l1) respectively.
// Let r_o and l_o be the orthogonals to (r2-r1) and (l2-l1).
// Then the above formulas can be set equal and multiplied by either one of the orthogonals.
// Note that x.dot(y_o) == x.perp(y) holds for the nalgebra crate!
// Also the perpendicular product of a vector with itself is zero.
// This yields the two formulas (without borrowing for better readability)
// => r1.perp(r2-r1) + t*(r2-r1).perp(r2-r1) = l1.perp(r2-r1) + u*(l2-l1).perp(r2-r1)
// <=> r1.perp(r2-r1) = l1.perp(r2-r1) + u*(l2-l1).perp(r2-r1)
// <=> (r1-l1).perp(r2-r1) = u*(l2-l1).perp(r2-r1)
// => l1.perp(l2-l1) + u*(l2-l1).perp(l2-l1) = r1.perp(l2-l1) + t*(r2-r1).perp(l2-l1)
// <=> r1.perp(l2-l1) + t*(r2-r1).perp(l2-l1) = l1.perp(l2-l1)
// <=> t*(r2-r1).perp(l2-l1) = (l1-r1).perp(l2-l1)
// Split the result in enominator and denominator
let t_enum = (l1 - r1).perp(&(l2 - l1));
let u_enum = (r1 - l1).perp(&(r2 - r1));
let t_denom = (r2 - r1).perp(&(l2 - l1));
let u_denom = -t_denom;
// If the denominators are zero, the following possibilities arise
// 1) Either r1 and r2 are identical or l1 and l2
// 2) The lines are parallel and cannot intersect
if t_denom.is_zero() || u_denom.is_zero() {
// We can directly test if some of the points are on the same line
// Test this by calculating the dot product of r1-l1 with l2-l1.
// This value must be between the norm of l2-l1 squared
let d = (r1 - l1).dot(&(l2 - l1));
let e = (l2 - l1).norm_squared();
return F::zero() <= d && d <= e;
}
// Handles the case where the points for the ray were layed on top of each other.
// Then the ray will only hit the point if r1 and r2 are on the line segment itself.
let t = t_enum / t_denom;
let u = u_enum / u_denom;
// In order to be on the line-segment, we require that u is between 0.0 and 1.0
// Additionally for p to be on the ray, we require t >= 0.0
F::zero() <= u && u < F::one() && F::zero() <= t
}
impl<F, S, A, R, I1, I2, D>
Interaction<
nalgebra::Matrix<F, D, nalgebra::U2, S>,
nalgebra::Matrix<F, D, nalgebra::U2, S>,
nalgebra::Matrix<F, D, nalgebra::U2, S>,
(I1, I2),
> for VertexDerivedInteraction<A, R, I1, I2>
where
A: Interaction<Vector2<F>, Vector2<F>, Vector2<F>, I1>,
R: Interaction<Vector2<F>, Vector2<F>, Vector2<F>, I2>,
D: nalgebra::Dim,
F: nalgebra::Scalar + nalgebra::RealField,
nalgebra::Matrix<F, D, nalgebra::U2, S>:
core::ops::Mul<F, Output = nalgebra::Matrix<F, D, nalgebra::U2, S>>,
F: Copy,
// nalgebra::DefaultAllocator: nalgebra::allocator::Allocator<F, D, nalgebra::Const<2>>,
// nalgebra::VecStorage<F, D, nalgebra::Const<2>>: nalgebra::Storage<F, D, nalgebra::Const<2>>
// S: nalgebra::RawStorage<F, D, nalgebra::U2>,
S: nalgebra::RawStorageMut<F, D, nalgebra::U2>,
S: nalgebra::Storage<F, D, nalgebra::U2>,
S: Clone,
{
fn get_interaction_information(&self) -> (I1, I2) {
let i1 = self.outside_interaction.get_interaction_information();
let i2 = self.inside_interaction.get_interaction_information();
(i1, i2)
}
fn calculate_force_between(
&self,
own_pos: &nalgebra::Matrix<F, D, nalgebra::U2, S>,
own_vel: &nalgebra::Matrix<F, D, nalgebra::U2, S>,
ext_pos: &nalgebra::Matrix<F, D, nalgebra::U2, S>,
ext_vel: &nalgebra::Matrix<F, D, nalgebra::U2, S>,
ext_information: &(I1, I2),
) -> Result<
(
nalgebra::Matrix<F, D, nalgebra::U2, S>,
nalgebra::Matrix<F, D, nalgebra::U2, S>,
),
CalcError,
> {
// IMPORTANT!!
// This code assumes that we are dealing with a regular! polygon!
// Calculate the middle point which we will need later
let middle_own = own_pos.row_mean().transpose();
let average_vel_own = own_vel.row_mean().transpose();
let middle_ext = ext_pos.row_mean().transpose();
let average_vel_ext = ext_vel.row_mean().transpose();
// Also calculate our own polygon defined by lines between points
let own_polygon_lines = own_pos
.row_iter()
.map(|vec| vec.transpose())
.circular_tuple_windows()
.collect::<Vec<(_, _)>>();
let vec_on_edge = (own_pos.view_range(0..1, 0..2) + own_pos.view_range(1..2, 0..2))
.transpose()
/ (F::one() + F::one());
// This is simplified notation for the following
// p = 2*v - middle = (v-middle) + v
let point_outside_polygon = vec_on_edge * (F::one() + F::one()) - middle_own;
// Store the total calculated force here
let mut total_force_own = ext_pos.clone() * F::zero();
let mut total_force_ext = ext_pos.clone() * F::zero();
// Match the obtained interaction information
let (inf1, inf2) = ext_information;
// Pick one point from the external positions
// and calculate which would be the nearest point on the own positions
for (n_row_ext, point_ext) in ext_pos.row_iter().enumerate() {
let point_ext = point_ext.transpose();
// Check if the point is inside the polygon.
// If this is the case, do not calculate any attracting force.
// We first calculate a bounding box and test quickly with this
let bounding_box: [[F; 2]; 2] = own_pos.row_iter().map(|v| v.transpose()).fold(
[[F::max_value().unwrap(), F::min_value().unwrap()]; 2],
|mut accumulator, polygon_edge| {
accumulator[0][0] = accumulator[0][0].min(polygon_edge.x);
accumulator[0][1] = accumulator[0][1].max(polygon_edge.x);
accumulator[1][0] = accumulator[1][0].min(polygon_edge.y);
accumulator[1][1] = accumulator[1][1].max(polygon_edge.y);
accumulator
},
);
let point_is_out_of_bounding_box = point_ext.x < bounding_box[0][0]
|| point_ext.x > bounding_box[0][1]
|| point_ext.y < bounding_box[1][0]
|| point_ext.y > bounding_box[1][1];
let external_point_is_in_polygon = match point_is_out_of_bounding_box {
true => false,
false => {
// If the bounding box was not successful,
// we use the ray-casting algorithm to check.
let n_intersections: usize = own_polygon_lines
.iter()
.map(|line| {
ray_intersects_line_segment(&(point_ext, point_outside_polygon), line)
as usize
})
.sum();
// An even number means that the point was outside
// while odd numbers mean that the point was inside.
n_intersections % 2 == 1
}
};
if external_point_is_in_polygon {
// Calculate the force inside the cell
let (calc_own, calc_ext) = self.inside_interaction.calculate_force_between(
&middle_own,
&average_vel_own,
&point_ext,
&average_vel_ext,
inf2,
)?;
let dir = (middle_ext - middle_own).normalize();
let calc_own = -dir * calc_own.norm();
let calc_ext = dir * calc_ext.norm();
let mut force_ext = total_force_ext.row_mut(n_row_ext);
force_ext += calc_ext.transpose();
let n_rows = total_force_own.nrows();
let n_rows_float = F::from_usize(n_rows).unwrap();
total_force_own
.row_iter_mut()
.for_each(|mut r| r += calc_own.transpose() / n_rows_float);
} else {
// Calculate the force outside
if let Some((n_row_nearest, (_, nearest_point, t_frac))) =
nearest_point_from_point_to_multiple_lines(&point_ext, &own_polygon_lines)
{
let (calc_own, calc_ext) = self.outside_interaction.calculate_force_between(
&nearest_point,
&average_vel_own,
&point_ext,
&average_vel_ext,
inf1,
)?;
let mut force_ext = total_force_ext.row_mut(n_row_ext);
force_ext += calc_ext.transpose();
let mut force_own_n = total_force_own.row_mut(n_row_nearest);
force_own_n += calc_own.transpose() * (F::one() - t_frac);
let mut force_own_n1 =
total_force_own.row_mut((n_row_nearest + 1) % total_force_own.nrows());
force_own_n1 += calc_own.transpose() * t_frac;
}
};
}
Ok((total_force_own, total_force_ext))
}
}
mod test {
#[test]
fn test_closest_points() {
// Define the line we will be using
let p1 = nalgebra::Vector2::from([0.0, 0.0]);
let p2 = nalgebra::Vector2::from([2.0, 0.0]);
// Create a vector of tuples which have (input_point,
// expected_nearest_point, expected_distance)
let mut test_points = Vec::new();
// Define the points we will be testing
// Normal point which lies perpendicular to line
test_points.push((
nalgebra::Vector2::from([0.5, 1.0]),
nalgebra::Vector2::from([0.5, 0.0]),
1.0,
));
// Point to check left edge of line
test_points.push((nalgebra::Vector2::from([-1.0, 2.0]), p1, 5.0_f64.sqrt()));
// Point to check right edge of line
test_points.push((nalgebra::Vector2::from([3.0, -2.0]), p2, 5.0_f64.sqrt()));
// Check if the distance and point are matching
for (q, r, d) in test_points.iter() {
let (dist, nearest_point, _) = super::nearest_point_from_point_to_line(q, &(p1, p2));
assert_eq!(dist, *d);
assert_eq!(nearest_point, *r);
}
}
#[test]
fn test_point_is_in_regular_polygon() {
use itertools::Itertools;
// Define the polygon for which we are testing
let polygon = [
nalgebra::Vector2::from([-1.0, 0.0]),
nalgebra::Vector2::from([0.0, 1.0]),
nalgebra::Vector2::from([1.0, 0.0]),
nalgebra::Vector2::from([0.0, -1.0]),
];
// This is the polygon
// / \
// / \
// / \
// / \
// \ /
// \ /
// \ /
// \ /
// For testing, we need to pick a point outside of the polygon
let point_outside_polygon = nalgebra::Vector::from([-3.0, 0.0]);
// Define points which should be inside the polygon
let points_inside = [
nalgebra::Vector2::from([0.0, 0.0]),
nalgebra::Vector2::from([0.0, 0.1]),
nalgebra::Vector2::from([0.0, 0.99999]),
nalgebra::Vector2::from([0.99999, 0.0]),
nalgebra::Vector2::from([0.0, 1.0]),
// This point here was always a problem!
// TODO write function above such that point [1.0, 0.0] is also inside!
// For now this is enough since this is only a very narrow edge case
nalgebra::Vector2::from([0.99999, 0.0]),
nalgebra::Vector2::from([-1.0, 0.0]),
nalgebra::Vector2::from([0.0, -1.0]),
];
// Check the points inside the polygon
for p in points_inside.iter() {
let n_intersections: usize = polygon
.into_iter()
.circular_tuple_windows::<(_, _)>()
.map(|line| {
super::ray_intersects_line_segment(&(*p, point_outside_polygon), &line) as usize
})
.sum();
assert!(n_intersections % 2 == 1);
}
// Define points which should be outside the polygon
let points_outside = [
nalgebra::Vector2::from([2.0, 0.0]),
nalgebra::Vector2::from([-1.5, 0.0]),
nalgebra::Vector2::from([0.5, 1.2]),
nalgebra::Vector2::from([1.3, -1.0001]),
nalgebra::Vector2::from([1.0000000000001, 0.0]),
nalgebra::Vector2::from([0.0, -1.000000000001]),
];
// Check them
for q in points_outside.iter() {
let n_intersections: usize = polygon
.into_iter()
.circular_tuple_windows()
.map(|line| {
super::ray_intersects_line_segment(&(*q, point_outside_polygon), &line) as usize
})
.sum();
assert!(n_intersections % 2 == 0);
}
// These are sample values taken from a random simulation
let new_polygon = [
nalgebra::Vector2::from([89.8169131069576, 105.21635977300497]),
nalgebra::Vector2::from([88.08135232199689, 107.60515425930363]),
nalgebra::Vector2::from([85.27315598238903, 106.69271595767589]),
nalgebra::Vector2::from([85.27315598238903, 103.74000358833405]),
nalgebra::Vector2::from([88.08135232199689, 102.8275652867063]),
];
let new_point_outside_polygon = nalgebra::Vector2::from([80.0, 90.0]);
let points_inside_2 = [nalgebra::Vector2::from([
88.08135232199689,
102.8275652867063,
])];
for q in points_inside_2.iter() {
let n_intersections: usize = new_polygon
.into_iter()
.circular_tuple_windows()
.map(|line| {
super::ray_intersects_line_segment(&(*q, new_point_outside_polygon), &line)
as usize
})
.sum();
assert!(n_intersections % 2 != 0);
}
}
}