cellular_raza_concepts/
domain.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
use std::collections::{BTreeMap, BTreeSet};

use crate::errors::{BoundaryError, DecomposeError};

/// Provides an abstraction of the physical total simulation domain.
///
/// [cellular_raza](https://github.com/jonaspleyer/cellular_raza) uses domain-decomposition
/// algorithms to split up the computational workload over multiple physical regions.
/// That's why the domain itself is mostly responsible for being deconstructed
/// into smaller [SubDomains](SubDomain) which can then be used to numerically solve our system.
///
/// This trait can be automatically implemented when the [SortCells], [DomainRngSeed],
/// and [DomainCreateSubDomains] are satisfied together with a small number of trait bounds to hash
/// and compare indices.
pub trait Domain<C, S, Ci = Vec<C>> {
    /// Subdomains can be identified by their unique [SubDomainIndex](Domain::SubDomainIndex).
    /// The backend uses this property to construct a mapping (graph) between subdomains.
    type SubDomainIndex;

    /// Similarly to the [SubDomainIndex](Domain::SubDomainIndex), voxels can be accessed by
    /// their unique index. The backend will use this information to construct a mapping
    /// (graph) between voxels inside their respective subdomains.
    type VoxelIndex;

    /// Deconstructs the [Domain] into its respective subdomains.
    ///
    /// When using the blanket implementation of this function, the following steps are carried
    /// out:
    /// Its functionality consists of the following steps:
    /// 1. Decompose the Domain into [Subdomains](SubDomain)
    /// 2. Build a neighbor map between [SubDomains](SubDomain)
    /// 3. Sort cells to their respective [SubDomain]
    /// However, to increase performance or avoid trait bounds, one can also opt to implement this
    /// trait directly.
    fn decompose(
        self,
        n_subdomains: core::num::NonZeroUsize,
        cells: Ci,
    ) -> Result<DecomposedDomain<Self::SubDomainIndex, S, C>, DecomposeError>;
}

/// Manage the current rng seed of a [Domain]
pub trait DomainRngSeed {
    // fn set_rng_seed(&mut self, seed: u64);

    /// Obtains the current rng seed
    fn get_rng_seed(&self) -> u64;
}

/// Generate [SubDomains](SubDomain) from an existing [Domain]
pub trait DomainCreateSubDomains<S> {
    /// This should always be identical to [Domain::SubDomainIndex].
    type SubDomainIndex;
    /// This should always be identical to [Domain::VoxelIndex].
    type VoxelIndex;

    /// Generates at most `n_subdomains`. This function can also return a lower amount of
    /// subdomains but never less than 1.
    fn create_subdomains(
        &self,
        n_subdomains: core::num::NonZeroUsize,
    ) -> Result<
        impl IntoIterator<Item = (Self::SubDomainIndex, S, Vec<Self::VoxelIndex>)>,
        DecomposeError,
    >;
}

/// Generated by the [decompose](Domain::decompose) method. The backend will know how to
/// deal with this type and crate a working simulation from it.
pub struct DecomposedDomain<I, S, C> {
    /// Number of spawned [SubDomains](SubDomain). This number is guaranteed to be
    /// smaller or equal to the number may be different to the one given to the
    /// [Domain::decompose] method.
    /// Such behaviour can result from not being able to construct as many subdomains as desired.
    /// Note that this function will attempt to construct more [SubDomains](SubDomain)
    /// than available CPUs if given a larger number.
    pub n_subdomains: core::num::NonZeroUsize,
    /// Vector containing properties of individual [SubDomains](SubDomain).
    /// Entries are [Domain::SubDomainIndex], [SubDomain], and a vector of cells.
    // TODO can be use another iterator than Vec<(I, S, Vec<C>)>?
    pub index_subdomain_cells: Vec<(I, S, Vec<C>)>,
    /// Encapsulates how the subdomains are linked to each other.
    /// Eg. two subdomains without any boundary will never appear in each others collection
    /// of neighbors.
    /// For the future, we might opt to change to an undirected graph rather than a [BTreeMap].
    pub neighbor_map: BTreeMap<I, BTreeSet<I>>,
    /// Initial seed of the simulation for random number generation.
    pub rng_seed: u64,
}

/// Subdomains are produced by decomposing a [Domain] into multiple physical regions.
///
/// # Derivation
/// ```
/// # use cellular_raza_concepts::*;
/// struct MySubDomain {
///     x_min: f32,
///     x_max: f32,
///     n: usize,
/// }
///
/// impl SubDomain for MySubDomain {
///     type VoxelIndex = usize;
///
///     fn get_neighbor_voxel_indices(
///         &self,
///         voxel_index: &Self::VoxelIndex
///     ) -> Vec<Self::VoxelIndex> {
///         (voxel_index.saturating_sub(1)..voxel_index.saturating_add(1).min(self.n)+1)
///             .filter(|k| k!=voxel_index)
///             .collect()
///     }
///
///     fn get_all_indices(&self) -> Vec<Self::VoxelIndex> {
///         (0..self.n).collect()
///     }
/// }
///
/// #[derive(SubDomain)]
/// struct MyNewSubDomain {
///     #[Base]
///     base: MySubDomain,
/// }
/// # let _my_sdm = MyNewSubDomain {
/// #     base: MySubDomain {
/// #         x_min: -20.0,
/// #         x_max: -11.0,
/// #         n: 20,
/// #     }
/// # };
/// # assert_eq!(_my_sdm.get_all_indices(), (0..20).collect::<Vec<_>>());
/// # assert_eq!(_my_sdm.get_neighbor_voxel_indices(&0), vec![1]);
/// # assert_eq!(_my_sdm.get_neighbor_voxel_indices(&3), vec![2,4]);
/// # assert_eq!(_my_sdm.get_neighbor_voxel_indices(&7), vec![6,8]);
/// ```
pub trait SubDomain {
    /// Individual Voxels inside each subdomain can be accessed by this index.
    type VoxelIndex;

    /// Obtains the neighbor voxels of the specified voxel index. This function behaves similarly
    /// to [SortCells::get_voxel_index_of] in that it also has to return
    /// indices which are in other [SubDomains](SubDomain).
    fn get_neighbor_voxel_indices(&self, voxel_index: &Self::VoxelIndex) -> Vec<Self::VoxelIndex>;

    // fn apply_boundary(&self, cell: &mut C) -> Result<(), BoundaryError>;

    /// Get all voxel indices of this [SubDomain].
    fn get_all_indices(&self) -> Vec<Self::VoxelIndex>;
}

/// Assign an [VoxelIndex](SortCells::VoxelIndex) to a given cell.
///
/// This trait is used by the [Domain] and [SubDomain] trait to assign a [Domain::SubDomainIndex]
/// and [SubDomain::VoxelIndex] respectively.
///
/// # [SubDomain]
/// This trait is supposed to return the correct voxel index of the cell
/// even if this index is inside another [SubDomain].
/// This restriction might be lifted in the future but is still
/// required now.
pub trait SortCells<C> {
    /// An index which determines to which next smaller unit the cell should be assigned.
    type VoxelIndex;

    /// If given a cell, we can sort this cell into the corresponding sub unit.
    fn get_voxel_index_of(&self, cell: &C) -> Result<Self::VoxelIndex, BoundaryError>;
}

/// Apply boundary conditions to a cells position and velocity.
///
/// # Derivation
/// ```
/// # use cellular_raza_concepts::*;
/// # use cellular_raza_concepts::BoundaryError;
/// struct MyMechanics {
///     x_min: f64,
///     x_max: f64,
/// }
///
/// impl SubDomainMechanics<f64, f64> for MyMechanics {
///     fn apply_boundary(&self, pos: &mut f64, vel: &mut f64) -> Result<(), BoundaryError> {
///         if *pos < self.x_min {
///             *vel = vel.abs();
///         }
///         if *pos > self.x_max {
///             *vel = -vel.abs();
///         }
///         *pos = pos.clamp(self.x_min, self.x_max);
///         Ok(())
///     }
/// }
///
/// #[derive(SubDomain)]
/// struct MySubDomain {
///     #[Mechanics]
///     mechanics: MyMechanics,
/// }
/// # let _my_sdm = MySubDomain {
/// #     mechanics: MyMechanics {
/// #         x_min: 1.0,
/// #         x_max: 33.0,
/// #     }
/// # };
/// # let mut pos = 0.0;
/// # let mut vel = - 0.1;
/// # _my_sdm.apply_boundary(&mut pos, &mut vel).unwrap();
/// # assert_eq!(pos, 1.0);
/// # assert_eq!(vel, 0.1);
/// ```
pub trait SubDomainMechanics<Pos, Vel> {
    /// If the subdomain has boundary conditions, this function will enforce them onto the cells.
    /// For the future, we plan to replace this function to additionally obtain information
    /// about the previous and current location of the cell.
    fn apply_boundary(&self, pos: &mut Pos, vel: &mut Vel) -> Result<(), BoundaryError>;
}

/// Apply a force on a cell depending on its position and velocity.
///
/// # Derivation
/// ```
/// # use cellular_raza_concepts::*;
/// struct MyForce {
///     damping: f64,
/// }
///
/// impl SubDomainForce<f64, f64, f64> for MyForce {
///     fn calculate_custom_force(&self, pos: &f64, vel: &f64) -> Result<f64, CalcError> {
///         Ok(- self.damping * vel)
///     }
/// }
///
/// #[derive(SubDomain)]
/// struct MySubDomain {
///     #[Force]
///     force: MyForce,
/// }
/// # let _my_sdm = MySubDomain {
/// #     force: MyForce {
/// #         damping: 0.1,
/// #     }
/// # };
/// # let calculated_force = _my_sdm.calculate_custom_force(&0.0, &1.0).unwrap();
/// # assert_eq!(calculated_force, -0.1);
/// ```
pub trait SubDomainForce<Pos, Vel, For> {
    ///
    fn calculate_custom_force(&self, pos: &Pos, vel: &Vel) -> Result<For, crate::CalcError>;
}

/// Describes extracellular reactions and fluid dynamics
///
/// # Derivation
/// ```
/// # use cellular_raza_concepts::*;
///
/// #[derive(Clone, Debug)]
/// struct MyReactions<const N: usize> {
///     values: Vec<f32>,
///     pos: [f32; N],
/// }
///
/// impl<const N: usize> SubDomainReactions<[f32; N], Vec<f32>, f32> for MyReactions<N> {
///     type NeighborValue = Vec<f32>;
///     type BorderInfo = Self;
///
///     fn treat_increments<I, J>(
///         &mut self,
///         neighbors: I,
///         sources: J,
///     ) -> Result<(), CalcError>
///     where
///         I: IntoIterator<Item = Self::NeighborValue>,
///         J: IntoIterator<Item = ([f32; N], Vec<f32>)>,
///     {
///         Ok(())
///     }
///
///     fn update_fluid_dynamics(&mut self, dt: f32) -> Result<(), CalcError> {
///         Ok(())
///     }
///
///     fn get_extracellular_at_pos(&self, pos: &[f32; N]) -> Result<Vec<f32>, CalcError> {
///         Ok(self.values.clone())
///     }
///
///     fn get_neighbor_value(&self, border_info: Self::BorderInfo) -> Self::NeighborValue {
///         self.values.clone()
///     }
///
///     fn get_border_info(&self) -> Self::BorderInfo {
///         self.clone()
///     }
/// }
///
/// #[derive(SubDomain)]
/// struct DerivedSubDomain<const N: usize> {
///     #[Reactions]
///     reactions: MyReactions<N>,
/// }
/// ```
pub trait SubDomainReactions<Pos, Re, Float> {
    /// Extracellular value of neighbor
    type NeighborValue;
    /// Exchanged information to locate neighboring subdomains.
    type BorderInfo;

    /// Combines increments which have been obtained by neighbors and cell-sources
    fn treat_increments<I, J>(&mut self, neighbors: I, sources: J) -> Result<(), crate::CalcError>
    where
        I: IntoIterator<Item = Self::NeighborValue>,
        J: IntoIterator<Item = (Pos, Re)>;

    /// Main update function to calculate new values of extracellular concentrations.
    fn update_fluid_dynamics(&mut self, dt: Float) -> Result<(), crate::CalcError>;

    /// Obtain extracellular concentrations at given point.
    fn get_extracellular_at_pos(&self, pos: &Pos) -> Result<Re, crate::CalcError>;
    /// Obtains the [SubDomainReactions::NeighborValue] which should be sent to the neighbor which
    /// has exposed the given [SubDomainReactions::BorderInfo].
    fn get_neighbor_value(&self, border_info: Self::BorderInfo) -> Self::NeighborValue;
    /// Obtains the [SubDomainReactions::BorderInfo] used to retrieve the
    /// [SubDomainReactions::NeighborValue].
    fn get_border_info(&self) -> Self::BorderInfo;
}

/// This trait derives the different aspects of a [SubDomain].
///
/// It serves similarly as the [cellular_raza_concepts_derive::CellAgent] trait to quickly
/// build new structures from already existing functionality.
///
/// | Attribute | Trait | Implemented |
/// | ---  | --- |:---:|
/// | `Base` | [SubDomain] | ✅ |
/// | `SortCells` | [SortCells] | ✅ |
/// | `Mechanics` | [SubDomainMechanics] | ✅ |
/// | `Force` | [SubDomainForce] | ✅  |
/// | `Reactions` | [SubDomainReactions] | ❌ |
///
/// # Example Usage
/// ```
/// # use cellular_raza_concepts::*;
/// # struct MySubDomain;
/// # impl SubDomain for MySubDomain {
/// #     type VoxelIndex = usize;
/// #     fn get_neighbor_voxel_indices(&self, voxel_index: &Self::VoxelIndex) -> Vec<usize> {
/// #         Vec::new()
/// #     }
/// #     fn get_all_indices(&self) -> Vec<Self::VoxelIndex> {
/// #         Vec::new()
/// #     }
/// # }
/// #[derive(SubDomain)]
/// struct MyDerivedSubDomain {
///     #[Base]
///     s: MySubDomain,
/// }
/// # let derived_subdomain = MyDerivedSubDomain {
/// #     s: MySubDomain,
/// # };
/// # let all_indices = derived_subdomain.get_all_indices();
/// # assert_eq!(all_indices.len(), 0);
/// ```
#[doc(inline)]
pub use cellular_raza_concepts_derive::SubDomain;

/// Derives aspects related to the simulation [Domain]
///
/// | Attribute | Trait | Implemented |
/// | -- | --- |:---:|
/// | `Base` | [Domain] | ✅ |
/// | `DomainPartialDerive` | [Domain] | ✅ |
/// | `DomainRngSeed` | [DomainRngSeed] | ✅ |
/// | `DomainCreateSubDomains` | [DomainCreateSubDomains] | ✅ |
/// | `SortCells` | [SortCells] | ✅ |
#[doc(inline)]
pub use cellular_raza_concepts_derive::Domain;