cellular_raza_concepts/
reactions.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
use crate::CalcError;
use crate::Position;

/// Setter and Getter for intracellular values of a cellagent.
pub trait Intracellular<Ri> {
    /// Sets the current intracellular values.
    fn set_intracellular(&mut self, intracellular: Ri);
    /// Obtains the current intracellular values.
    fn get_intracellular(&self) -> Ri;
}

/// Describes purely intracellular reactions of a cellagent.
///
/// In the most simple case, intracellular values can be assumed to have a homogeneous distribution
/// throughout the entire cell.
/// We can then describe them by a list of values $\vec{u}=(u_0,\dots,u_N)$.
// TODO implement random contributions
pub trait Reactions<Ri/*, Float = f64*/>: Intracellular<Ri> {
    /// Calculates the purely intracellular reaction increment.
    /// Users who implement this trait should always use the given argument instead of relying on
    /// values obtained via `self`.
    fn calculate_intracellular_increment(&self, intracellular: &Ri) -> Result<Ri, CalcError>;
}

/// This trait models extracellular reactions which interact with agents.
pub trait ReactionsExtra<Ri, Re> {
    // TODO do we need this associated type?
    // type IncrementExtracellular;
    /// TODO add description
    fn calculate_combined_increment(
        &self,
        intracellular: &Ri,
        extracellular: &Re,
    ) -> Result<(Ri, Re), CalcError>;
}

/// Reactions between cells which are in direct contact
pub trait ReactionsContact<Ri, Pos, Float = f64, RInf = ()> {
    /// Obtains information about the other cells
    fn get_contact_information(&self) -> RInf;

    /// Calculates the combined increment
    fn calculate_contact_increment(
        &self,
        own_intracellular: &Ri,
        ext_intracellular: &Ri,
        own_pos: &Pos,
        ext_pos: &Pos,
        rinf: &RInf,
    ) -> Result<(Ri, Ri), CalcError>;
}

/// Mathematical abstraction similar to the well-known `axpy` method.
///
/// ```
/// # use cellular_raza_concepts::Xapy;
/// let a = 2.0;
/// let x = 33.0;
/// let y = 234.0;
/// assert_eq!(x*a + y, x.xapy(a, &y));
/// assert_eq!((x*a + y)*a+y, x.xapy(a, &y).xapy(a, &y));
/// ```
pub trait Xapy<F> {
    /// Abstraction over the common `a*x + y` mathematical function.
    fn xapy(&self, a: F, y: &Self) -> Self;

    /// Abstraction over scalar multiplication `a*x`.
    fn xa(&self, a: F) -> Self;
}

impl<F, X> Xapy<F> for X
where
    X: for<'a> core::ops::Add<&'a X, Output = X>,
    for<'a> &'a X: core::ops::Mul<F, Output = X>,
{
    fn xapy(&self, a: F, y: &Self) -> Self {
        self * a + y
    }

    fn xa(&self, a: F) -> Self {
        self * a
    }
}

#[allow(unused)]
fn solver_euler_extra<F, C, Ri, E>(
    dt: F,
    cell: &mut C,
    extracellular: &mut E,
) -> Result<(), Box<dyn std::error::Error>>
where
    C: ReactionsExtra<Ri, E>,
    C: Intracellular<Ri>,
    F: num::Zero + num::One + Clone,
    Ri: Xapy<F>,
    E: Xapy<F>,
{
    let intra = cell.get_intracellular();
    let (dintra, dextra) = cell.calculate_combined_increment(&intra, extracellular)?;
    cell.set_intracellular(dintra.xapy(dt.clone(), &intra));
    *extracellular = dextra.xapy(dt, extracellular);
    Ok(())
}

#[allow(unused)]
fn solver_runge_kutta_4th_combined<F, C, Ri, E>(
    dt: F,
    cell: &mut C,
    extracellular: &mut E,
) -> Result<(), Box<dyn std::error::Error>>
where
    C: ReactionsExtra<Ri, E>,
    C: Intracellular<Ri>,
    F: num::Float,
    Ri: Xapy<F> + num::Zero,
    E: Xapy<F> + num::Zero,
{
    let intra = cell.get_intracellular();

    let two = F::one() + F::one();
    let (dintra1, dextra1) = cell.calculate_combined_increment(&intra, extracellular)?;
    let (dintra2, dextra2) = cell.calculate_combined_increment(
        &dintra1.xapy(dt / two, &intra),
        &dextra1.xapy(dt / two, &extracellular),
    )?;
    let (dintra3, dextra3) = cell.calculate_combined_increment(
        &dintra2.xapy(dt / two, &intra),
        &dextra2.xapy(dt / two, &extracellular),
    )?;
    let (dintra4, dextra4) = cell.calculate_combined_increment(
        &dintra3.xapy(dt, &intra),
        &dextra3.xapy(dt, &extracellular),
    )?;
    let six = two + two + two;
    let dintra = dintra1.xapy(
        F::one() / six,
        &dintra2.xapy(
            two / six,
            &dintra3.xapy(two / six, &dintra4.xapy(F::one() / six, &Ri::zero())),
        ),
    );
    let dextra = dextra1.xapy(
        F::one() / six,
        &dextra2.xapy(
            two / six,
            &dextra3.xapy(two / six, &dextra4.xapy(F::one() / six, &E::zero())),
        ),
    );
    cell.set_intracellular(dintra.xapy(dt, &intra));
    *extracellular = dextra.xapy(dt, extracellular);
    Ok(())
}

mod test_plain_float {
    use super::*;

    #[allow(unused)]
    #[derive(Clone)]
    struct MyCell {
        // Intracellular properties
        intracellular: f64,
        production: f64,
        degradation: f64,
        // For contact reactions
        pos: [f64; 2],
        exchange_term: f64,
        reaction_range: f64,
        // Extracellular reactions
        secretion_rate: f64,
    }

    impl Intracellular<f64> for MyCell {
        fn set_intracellular(&mut self, intracellular: f64) {
            self.intracellular = intracellular;
        }

        fn get_intracellular(&self) -> f64 {
            self.intracellular
        }
    }

    impl Reactions<f64> for MyCell {
        fn calculate_intracellular_increment(&self, intracellular: &f64) -> Result<f64, CalcError> {
            Ok(self.production - self.degradation * intracellular)
        }
    }

    impl ReactionsExtra<f64, f64> for MyCell {
        fn calculate_combined_increment(
            &self,
            intracellular: &f64,
            _extracellular: &f64,
        ) -> Result<(f64, f64), CalcError> {
            let secretion = self.secretion_rate * intracellular;
            Ok((-secretion, secretion))
        }
    }

    impl Position<[f64; 2]> for MyCell {
        fn pos(&self) -> [f64; 2] {
            self.pos
        }

        fn set_pos(&mut self, pos: &[f64; 2]) {
            self.pos = *pos;
        }
    }

    impl ReactionsContact<f64, [f64; 2]> for MyCell {
        fn calculate_contact_increment(
            &self,
            own_intracellular: &f64,
            ext_intracellular: &f64,
            own_pos: &[f64; 2],
            ext_pos: &[f64; 2],
            _rinf: &(),
        ) -> Result<(f64, f64), CalcError> {
            let dist =
                ((own_pos[0] - ext_pos[0]).powf(2.0) + (own_pos[1] - ext_pos[1]).powf(2.0)).sqrt();
            if dist < self.reaction_range {
                let exchange = self.exchange_term * (ext_intracellular - own_intracellular);
                Ok((exchange, -exchange))
            } else {
                Ok((0.0, 0.0))
            }
        }

        fn get_contact_information(&self) -> () {}
    }

    #[test]
    fn euler_reactions_contact() -> Result<(), Box<dyn std::error::Error>> {
        // We engineer these cells such that
        let mut c1 = MyCell {
            pos: [0.0; 2],
            intracellular: 1.0,
            production: 0.0,
            degradation: 0.0,
            exchange_term: 0.1,
            reaction_range: 3.0,
            secretion_rate: 0.0,
        };
        let mut c2 = c1.clone();
        c2.intracellular = 0.0;
        c2.pos = [0.25; 2];

        let dt = 0.02;
        for _ in 0..10_000 {
            // Calculate combined increments
            let p1 = c1.pos.clone();
            let r1 = c1.intracellular;
            let p2 = c2.pos.clone();
            let r2 = c2.intracellular;

            // The first index indicates from where the term originated while the second index
            // shows for which cell the value needs to be added.
            // From cell 1 to 2
            let (dr11, dr12) = c1.calculate_contact_increment(&r1, &r2, &p1, &p2, &())?;
            // From cell 2 to 1
            let (dr22, dr21) = c2.calculate_contact_increment(&r2, &r1, &p2, &p1, &())?;

            // Calculate the combined increments
            let dr1 = dt * (dr11 + dr21) / 2.0;
            let dr2 = dt * (dr12 + dr22) / 2.0;

            // Update the intracellular values of c1 and c2
            c1.set_intracellular(r1 + dr1);
            c2.set_intracellular(r2 + dr2);
        }
        // Test that the resulting concentrations are matching in the end.
        assert!((c1.get_intracellular() - c2.get_intracellular()).abs() < 1e-6);
        Ok(())
    }

    #[test]
    fn test_euler_extra() -> Result<(), Box<dyn std::error::Error>> {
        let x0 = 1.0;
        let mut cell = MyCell {
            pos: [0.0; 2],
            intracellular: x0,
            production: 0.0,
            degradation: 0.0,
            exchange_term: 0.0,
            reaction_range: 0.0,
            secretion_rate: 0.1,
        };
        let mut extracellular = 0.0;

        let dt = 0.002;
        let exact_solution_cell =
            |t: f64, x0: f64, degradation: f64| -> f64 { x0 * (-degradation * t).exp() };

        for n_step in 0..10_000 {
            solver_euler_extra(dt, &mut cell, &mut extracellular)?;
            let x_exact = exact_solution_cell((n_step + 1) as f64 * dt, x0, cell.secretion_rate);
            assert!((cell.get_intracellular() - x_exact).abs() < 1e-4);
        }
        Ok(())
    }

    #[test]
    fn runge_kutta_intracellular() -> Result<(), Box<dyn std::error::Error>> {
        let x0 = 2.0;
        let mut cell = MyCell {
            pos: [0.0; 2],
            intracellular: x0,
            production: 1.0,
            degradation: 0.2,
            exchange_term: 0.0,
            reaction_range: 0.0,
            secretion_rate: 0.0,
        };

        let analytical_solution = |t: f64, x0: f64, production: f64, degradation: f64| -> f64 {
            production / degradation
                * (1.0 - (1.0 - x0 * degradation / production) * (-degradation * t).exp())
        };

        let dt = 1e-0;
        for n_step in 0..100 {
            let intra = cell.get_intracellular();
            // Do the runge-kutta numerical integration steps
            let k1 = cell.calculate_intracellular_increment(&(intra))?;
            let k2 = cell.calculate_intracellular_increment(&(intra + dt / 2.0 * k1))?;
            let k3 = cell.calculate_intracellular_increment(&(intra + dt / 2.0 * k2))?;
            let k4 = cell.calculate_intracellular_increment(&(intra + dt * k3))?;

            // Calculate the total increment
            let dintra = dt / 6.0 * (k1 + 2.0 * k2 + 2.0 * k3 + k4);

            // Update the values
            cell.set_intracellular(intra + dintra);
            let exact_result = analytical_solution(
                dt * (n_step + 1) as f64,
                x0,
                cell.production,
                cell.degradation,
            );
            assert!((cell.get_intracellular() - exact_result).abs() < 1e-4);
        }
        assert!((cell.get_intracellular() - cell.production / cell.degradation).abs() < 1e-6);
        Ok(())
    }

    #[test]
    fn test_generic_solver_runge_kutta_combined() -> Result<(), Box<dyn std::error::Error>> {
        let x0 = 10.0;
        let mut cell = MyCell {
            pos: [0.0; 2],
            intracellular: x0,
            production: 0.0,
            degradation: 0.0,
            exchange_term: 0.0,
            reaction_range: 0.0,
            secretion_rate: 0.15,
        };
        let mut extracellular = 1.0;

        let exact_result =
            |t: f64, x0: f64, degradation: f64| -> f64 { x0 * (-degradation * t).exp() };

        let dt = 0.1;
        for n_step in 0..1_000 {
            let t = (n_step + 1) as f64 * dt;
            solver_runge_kutta_4th_combined(dt, &mut cell, &mut extracellular)?;
            let exact_value = exact_result(t, x0, cell.secretion_rate);
            assert!((exact_value - cell.get_intracellular()).abs() < 1e-6);
        }
        assert!(cell.get_intracellular().abs() < 1e-5);
        Ok(())
    }

    #[test]
    fn adams_bashforth_3rd_extracellular() -> Result<(), Box<dyn std::error::Error>> {
        let x0 = 10.0;
        let mut cell = MyCell {
            pos: [0.0; 2],
            intracellular: x0,
            production: 0.0,
            degradation: 0.0,
            exchange_term: 0.0,
            reaction_range: 0.0,
            secretion_rate: 0.1,
        };
        let mut extracellular = 0.0;

        let mut dcombined1 = None;
        let mut dcombined2 = None;

        let exact_solution =
            |t: f64, x0: f64, degradation: f64| -> f64 { x0 * (-degradation * t).exp() };

        let dt = 0.1;
        for n_step in 0..1_000 {
            let intra = cell.get_intracellular();

            // Calculate the total increment depening on how many previous values we have
            let (dintra, dextra) = cell.calculate_combined_increment(&intra, &extracellular)?;
            match (dcombined1, dcombined2) {
                (Some((dintra1, dextra1)), Some((dintra2, dextra2))) => {
                    let h1 = 23.0 / 12.0;
                    let h2 = -16.0 / 12.0;
                    let h3 = 5.0 / 12.0;
                    cell.set_intracellular(
                        intra + dt * (h1 * dintra + h2 * dintra1 + h3 * dintra2),
                    );
                    extracellular += dt * (h1 * dextra + h2 * dextra1 + h3 * dextra2);
                }
                (Some((dintra1, dextra1)), None) => {
                    let h1 = 3.0 / 2.0;
                    let h2 = -1.0 / 2.0;
                    cell.set_intracellular(intra + dt * (h1 * dintra + h2 * dintra1));
                    extracellular += dt * (h1 * dextra + h2 * dextra1);
                }
                // This is the euler method
                _ => {
                    cell.set_intracellular(intra + dt * dintra);
                    extracellular += dt * dextra;
                }
            }
            // Reset the increments
            dcombined2 = dcombined1;
            dcombined1 = Some((dintra, dextra));
            assert!((cell.get_intracellular() + extracellular - x0).abs() < 1e-6);

            // Calculate the exact value and commpare
            let exact_value = exact_solution((n_step + 1) as f64 * dt, x0, cell.secretion_rate);
            println!("{} {}", cell.get_intracellular(), exact_value);
            assert!((cell.get_intracellular() - exact_value).abs() < 1e-3);
        }
        Ok(())
    }
}

/// ```
/// use cellular_raza_concepts::{CellAgent, Intracellular, Reactions, CalcError};
/// struct MyReactions;
/// impl Intracellular<i16> for MyReactions {
///     fn get_intracellular(&self) -> i16 {
///         42
///     }
///     fn set_intracellular(&mut self, _intracellular: i16) {}
/// }
/// impl Reactions<i16> for MyReactions {
///     fn calculate_intracellular_increment(&self, intracellular: &i16) -> Result<i16,
///     CalcError> {
///         Ok(-1)
///     }
/// }
/// #[derive(CellAgent)]
/// struct MyCell {
///     #[Reactions]
///     reactions: MyReactions,
/// }
/// let mycell = MyCell {
///     reactions: MyReactions,
/// };
/// assert_eq!(mycell.get_intracellular(), 42);
/// assert_eq!(mycell.calculate_intracellular_increment(&7).unwrap(), -1);
/// ```
#[allow(unused)]
fn derive_reactions() {}

/// ```
/// use cellular_raza_concepts::{CellAgent, Intracellular, Reactions, CalcError};
/// struct MyIntracellular(String);
/// impl Intracellular<String> for MyIntracellular {
///     fn get_intracellular(&self) -> String {
///         format!("{}", self.0)
///     }
///     fn set_intracellular(&mut self, intracellular: String) {
///         self.0 = intracellular;
///     }
/// }
/// #[derive(CellAgent)]
/// struct MyAgent {
///     #[Intracellular]
///     intracellular: MyIntracellular,
/// }
/// let mut myagent = MyAgent {
///     intracellular: MyIntracellular("42".to_owned()),
/// };
/// assert_eq!(myagent.get_intracellular(), format!("42"));
/// myagent.set_intracellular(format!("this wind is nice"));
/// assert_eq!(myagent.get_intracellular(), "this wind is nice".to_owned());
/// ```
#[allow(unused)]
fn derive_intracellular() {}

/// ```
/// use cellular_raza_concepts::{CellAgent, Intracellular, Reactions, CalcError};
/// struct MyReactions;
/// impl Reactions<i16> for MyReactions {
///     fn calculate_intracellular_increment(&self, intracellular: &i16) -> Result<i16,
///     CalcError> {
///         Ok(-1)
///     }
/// }
/// impl Intracellular<i16> for MyReactions {
///     fn get_intracellular(&self) -> i16 {42}
///     fn set_intracellular(&mut self, _intracellular: i16) {}
/// }
/// #[derive(CellAgent)]
/// struct MyCell {
///     #[ReactionsRaw]
///     reactions: MyReactions,
/// }
/// impl Intracellular<i16> for MyCell {
///     fn get_intracellular(&self) -> i16 {12}
///     fn set_intracellular(&mut self, _: i16) {}
/// }
/// let mycell = MyCell {
///     reactions: MyReactions,
/// };
/// assert_eq!(mycell.get_intracellular(), 12);
/// assert_eq!(mycell.calculate_intracellular_increment(&7).unwrap(), -1);
/// ```
#[allow(unused)]
fn derive_reactions_raw() {}

/// ```
/// use cellular_raza_concepts::{CellAgent, Intracellular, ReactionsContact, CalcError};
/// struct MyReactions;
/// impl Intracellular<i16> for MyReactions {
///     fn get_intracellular(&self) -> i16 {
///         42
///     }
///     fn set_intracellular(&mut self, _intracellular: i16) {}
/// }
/// impl ReactionsContact<f32, (f64, f64), f32, (usize, String)> for MyReactions {
///     fn get_contact_information(&self) -> (usize, String) {
///         (1, "This is nice".to_owned())
///     }
///
///     fn calculate_contact_increment(
///         &self,
///         own_intracellular: &f32,
///         ext_intracellular: &f32,
///         own_pos: &(f64, f64),
///         ext_pos: &(f64, f64),
///         rinf: &(usize, String),
///     ) -> Result<(f32, f32), CalcError> {
///         Ok((1.2, 3.1))
///     }
/// }
/// #[derive(CellAgent)]
/// struct MyCell {
///     #[ReactionsContact]
///     reactions: MyReactions,
/// }
/// let mycell = MyCell {
///     reactions: MyReactions,
/// };
/// assert_eq!(mycell.get_contact_information(), (1, "This is nice".to_owned()));
/// assert_eq!(mycell.calculate_contact_increment(
///     &0.0,
///     &0.0,
///     &(0.0, 0.0),
///     &(1.0, 1.0),
///     &(33, "jo".to_owned())
/// ).unwrap(), (1.2, 3.1));
/// ```
#[allow(unused)]
fn derive_reactions_contact() {}

/// ```
/// use cellular_raza_concepts::*;
/// #[derive(Clone, Debug, PartialEq)]
/// struct MyIntracellular(&'static str);
/// #[derive(Clone, Debug, PartialEq)]
/// struct MyExtracellular {
///     forty_two: (),
/// }
/// struct MyReactionsExtra {
///     intracellular: MyIntracellular,
/// }
/// /* impl Intracellular<MyIntracellular> for MyReactionsExtra {
///     fn get_intracellular(&self) -> MyIntracellular {
///         self.intracellular.clone()
///     }
///
///     fn set_intracellular(&mut self, intracellular: MyIntracellular) {
///         self.intracellular = intracellular;
///     }
/// }*/
/// impl ReactionsExtra<MyIntracellular, MyExtracellular> for MyReactionsExtra {
///     fn calculate_combined_increment(
///         &self,
///         intracellular: &MyIntracellular,
///         extracellular: &MyExtracellular,
///     ) -> Result<(MyIntracellular, MyExtracellular), CalcError> {
///         Ok((intracellular.clone(), extracellular.clone()))
///     }
/// }
/// #[derive(CellAgent)]
/// struct MyCell {
///     #[ReactionsExtra]
///     reactions_extra: MyReactionsExtra,
/// }
/// let mycell = MyCell {
///     reactions_extra: MyReactionsExtra {
///         intracellular: MyIntracellular("nice"),
///     }
/// };
/// let (incr_intra, incr_extra) = mycell.calculate_combined_increment(
///     &MyIntracellular("not so nice"),
///     &MyExtracellular {
///         forty_two: (),
///     }
/// ).unwrap();
/// assert_eq!(incr_intra, MyIntracellular("not so nice"));
/// assert_eq!(incr_extra, MyExtracellular { forty_two: (), });
/// ```
#[allow(unused)]
fn derive_reactions_extra() {}

/* mod test_particle_sim {
    use super::*;

    struct Particle([f32; 3]);
    struct ParticleCollection(Vec<Particle>);

    struct Cell {
        intracellular: ParticleCollection,
    }
}*/